Symmetry and coplanarity of organic molecules affect their packing and photovoltaic properties in solution-processed solar cells.
نویسندگان
چکیده
In this study we synthesized three acceptor-donor-acceptor (A-D-A) organic molecules, TB3t-BT, TB3t-BTT, and TB3t-BDT, comprising 2,2'-bithiophene (BT), benzo[1,2-b:3,4-b':5,6-d″]trithiophene (BTT), and benzo[1,2-b;4,5-b']dithiophene (BDT) units, respectively, as central cores (donors), terthiophene (3t) as π-conjugated spacers, and thiobarbituric acid (TB) units as acceptors. These molecules display different degrees of coplanarity as evidenced by the differences in dihedral angles calculated from density functional theory. By using differential scanning calorimetry and X-ray diffractions for probing their crystallization characteristics and molecular packing in active layers, we found that the symmetry and coplanarity of molecules would significantly affect the melting/crystallization behavior and the formation of crystalline domains in the blend film with fullerene, PC61BM. TB3t-BT and TB3t-BDT, which each possess an inversion center and display high crystallinity in their pristine state, but they have different driving forces in crystallization, presumably because of different degrees of coplanarity. On the other hand, the asymmetrical TB3t-BTT behaved as an amorphous material even though it possesses a coplanar structure. Among our tested systems, the device comprising as-spun TB3t-BDT/PC61BM (6:4, w/w) active layer featured crystalline domains and displayed the highest power conversion efficiency (PCE) of 4.1%. In contrast, the as-spun TB3t-BT/PC61BM (6:4, w/w) active layer showed well-mixed morphology and with a device PCE of 0.2%; it increased to 3.9% after annealing the active layer at 150 °C for 15 min. As for TB3t-BTT, it required a higher content of fullerene in the TB3t-BTT/PC61BM (4:6, w/w) active layer to optimize its device PCE to 1.6%.
منابع مشابه
The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules
The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...
متن کاملQuantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole
The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...
متن کاملSynthesis and Investigation of Photovoltaic Properties of New Organic Dye in Solar Cells Device
In this paper, we designed and synthesized free-metal dyes based on indoline. The proposed dyes were synthesized from phenothiazine as the starting material by standard reactions. The chemical structure of the synthesized dye was confirmed using FT-IR, 1HNMR and DSC techniques. Spectrophotometric measurements of the organic dyes in acetonitrile and on a TiO2 substrate ...
متن کاملInvestigation of Photovoltaic Properties of 1,8-Naphthalimide Dyes in Dye-sensitized Solar Cells
In this paper we selected two metal-free dyes (Dye 1 and Dye 2) based on 1,8-naphthalimide. The proposed dyes were sensitized from acenaphthene as the starting material by standard reactions. Spectrophotometric measurements of the organic dyes in DMF and on TiO2 substrate were carried out in order to assess changes in the status of the dyes. Maximum absorption wavelengths for Dye...
متن کاملMaterials Based on Carbazole for Organic Solar Cells Applications. Theoretical Investigations
The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2014